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• Uncertain event data: events with quantified imprecision in their attributes

• “Quantified” means we can obtain a description of the uncertain attribute value(s)
 For categorical attributes: a set of possible values

 For numerical attributes: an interval of possible values

• We can also have events that have been recorded, but might not have occurred 

(indeterminate events)

• Often obtained through pre-processing and domain knowledge

Uncertain Data
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Uncertainty in Event Logs

Case ID Event ID Activity Timestamp Notes

3167 𝑒1 passenger check in 8: 13: 43

3167 𝑒2 test 11: 00

3167 𝑒3
communicate test

result 11: 00
reception not 

signed

3167 𝑒4 remove health data 22: 00: 00

Flight passenger #3167 landed in Munich from a high risk area.

Two types of test are possible: after landing and before departure
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Uncertainty in Event Logs

Case ID Event ID Activity Timestamp Event type

3167 𝑒1 passenger check in 8: 13: 43 !

3167 𝑒2
{test after landing ∶ 0.9,

test before departure: 0.1}
[11: 00: 00, 11: 59: 59] !

3167 𝑒3
communicate test

result [11: 00: 00, 11: 59: 59] !: 0.2 ? : 0.8

3167 𝑒4 remove health data 22: 00: 00 !

through domain knowledge or heuristics, we determine that the “test after landing“ has 90% of 

probability of being the label of e2
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Uncertainty in Event Logs

Case ID Event ID Activity Timestamp Event type

3167 𝑒1 passenger check in 8: 13: 43 !

3167 𝑒2
{test after landing ∶ 0.9,

test before departure: 0.1}
[11: 00: 00, 11: 59: 59] !

3167 𝑒3
communicate test

result [11: 00: 00, 11: 59: 59] !: 0.2 ? : 0.8

3167 𝑒4 remove health data 22: 00: 00 !

we represent the timestamps of e2 and e3 as time intervals
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Uncertainty in Event Logs

Case ID Event ID Activity Timestamp Event type

3167 𝑒1 passenger check in 8: 13: 43 !

3167 𝑒2
{test after landing ∶ 0.9,

test before departure: 0.1}
[11: 00: 00, 11: 59: 59] !

3167 𝑒3
communicate test

result [11: 00: 00, 11: 59: 59] !: 0.2 ? : 0.8

3167 𝑒4 remove health data 22: 00: 00 !

the “!“ symbol indicates the event actually occurred, the “?“ means the event did not occur but has 

been recorded

we determine the event did not occur with 80% probability
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Uncertain Trace Realizations

• This trace corresponds to many possible real-life scenarios depending on the 

true value of its uncertain attributes

• Every sequence of activities possible in the uncertain trace is called a realization
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Uncertain Trace Realizations

Case ID Event ID Activity Timestamp Event type

3167 𝑒1 passenger check in 8: 13: 43 !

3167 𝑒2
{test after landing ∶ 0.9,

test before departure: 0.1}
[11: 00: 00, 11: 59: 59] !

3167 𝑒3
communicate test

result [11: 00: 00, 11: 59: 59] !: 0.2 ? : 0.8

3167 𝑒4 remove health data 22: 00: 00 !

<passenger check in, test after landing, communicate test results, remove health data>

<passenger check in, test before departure, remove health data>

<passenger check in, communicate results, test before departure, remove health data>

<passenger check in, test after landing, remove health data>

…
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Uncertain Trace Realizations

• Research question: what is the probability of occurrence of each realization?

• This information is essential in the context of process mining on uncertain event 

data

• We will see how to determine such probabilities

• We will see their importance in an example of application: conformance 

checking
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Uncertain Trace Realizations

Case ID Event ID Activity Timestamp Event type

3167 𝑒1 passenger check in 8: 13: 43 !

3167 𝑒2
{test after landing ∶ 0.9,

test before departure: 0.1}
[11: 00: 00, 11: 59: 59] !

3167 𝑒3
communicate test

result [11: 00: 00, 11: 59: 59] !: 0.2 ? : 0.8

3167 𝑒4 remove health data 22: 00: 00 !

a

b
c

d

e

Event seq.

𝑺𝒆

Realization

𝑺𝒂

𝑒1, 𝑒2, 𝑒3, 𝑒4
𝑎, 𝑏, 𝑑, 𝑒

𝑎, 𝑐, 𝑑, 𝑒

𝑒1, 𝑒3, 𝑒2, 𝑒4
𝑎, 𝑑, 𝑏, 𝑒

𝑎, 𝑑, 𝑐, 𝑒

𝑒1, 𝑒2, 𝑒4
𝑎, 𝑏, 𝑒

𝑎, 𝑐, 𝑒
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Probability of Uncertain Trace Realizations

Event seq.

𝑺𝒆

Realization

𝑺𝒂

𝑒1, 𝑒2, 𝑒3, 𝑒4
𝑎, 𝑏, 𝑑, 𝑒

𝑎, 𝑐, 𝑑, 𝑒

𝑒1, 𝑒3, 𝑒2, 𝑒4
𝑎, 𝑑, 𝑏, 𝑒

𝑎, 𝑑, 𝑐, 𝑒

𝑒1, 𝑒2, 𝑒4
𝑎, 𝑏, 𝑒

𝑎, 𝑐, 𝑒

probability of observing the event sequence se

Probability of observing 

the realization sa given 

we observed the event 

sequence se
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Probability of Uncertain Trace Realizations

Event seq.

𝑺𝒆

Realization

𝑺𝒂

𝑒1, 𝑒2, 𝑒3, 𝑒4
𝑎, 𝑏, 𝑑, 𝑒

𝑎, 𝑐, 𝑑, 𝑒

𝑒1, 𝑒3, 𝑒2, 𝑒4
𝑎, 𝑑, 𝑏, 𝑒

𝑎, 𝑑, 𝑐, 𝑒

𝑒1, 𝑒2, 𝑒4
𝑎, 𝑏, 𝑒

𝑎, 𝑐, 𝑒

probability of observing the event sequence se

Probability of observing 

the realization sa given 

we observed the event 

sequence se

We assume 

independence!
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Probability of Uncertain Trace Realizations

Event set Event seq.

𝒔𝒆

Realization

𝒔𝒂 𝑷(𝒔𝒆) 𝑷(𝒔𝒂|𝒔𝒆) 𝑷(𝒔𝒂)

{𝑒1, 𝑒2, 𝑒3, 𝑒4}

𝑒1, 𝑒2, 𝑒3, 𝑒4
𝑎, 𝑏, 𝑑, 𝑒

𝑎, 𝑐, 𝑑, 𝑒

𝑒1, 𝑒3, 𝑒2, 𝑒4
𝑎, 𝑑, 𝑏, 𝑒

𝑎, 𝑑, 𝑐, 𝑒

{𝑒1, 𝑒2, 𝑒4} 𝑒1, 𝑒2, 𝑒4
𝑎, 𝑏, 𝑒

𝑎, 𝑐, 𝑒

Event 

ID
Activity Timestamp

Event 

type

𝑒1 a 8: 13: 43 !

𝑒2
{b∶ 0.9,
c: 0.1}

[11: 00: 00, 11: 59: 59] !

𝑒3 d [11: 00: 00, 11: 59: 59] !: 0.2 ? : 0.8

𝑒4 e 22: 00: 00 !

S1

S2

𝑃 𝑠𝑒 =
1

𝑆𝑖
⋅ ς

𝑒 ∈ 𝑠𝑒

𝑃 𝑒 𝑖𝑠 ! ⋅ ς
𝑒 ∉ 𝑠𝑒

𝑃 𝑒 𝑖𝑠 ?
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Probability of Uncertain Trace Realizations

Event set Event seq.

𝒔𝒆

Realization

𝒔𝒂 𝑷(𝒔𝒆) 𝑷(𝒔𝒂|𝒔𝒆) 𝑷(𝒔𝒂)

{𝑒1, 𝑒2, 𝑒3, 𝑒4}

𝑒1, 𝑒2, 𝑒3, 𝑒4
𝑎, 𝑏, 𝑑, 𝑒

0.1
𝑎, 𝑐, 𝑑, 𝑒

𝑒1, 𝑒3, 𝑒2, 𝑒4
𝑎, 𝑑, 𝑏, 𝑒

𝑎, 𝑑, 𝑐, 𝑒

{𝑒1, 𝑒2, 𝑒4} 𝑒1, 𝑒2, 𝑒4
𝑎, 𝑏, 𝑒

𝑎, 𝑐, 𝑒

Event 

ID
Activity Timestamp

Event 

type

𝑒1 a 8: 13: 43 !

𝑒2
{b∶ 0.9,
c: 0.1}

[11: 00: 00, 11: 59: 59] !

𝑒3 d [11: 00: 00, 11: 59: 59] !: 0.2 ? : 0.8

𝑒4 e 22: 00: 00 !

S1

S2

𝑃 ⟨𝑒1, 𝑒2, 𝑒3, 𝑒4⟩ =
1

𝑆1
⋅ 𝑝 𝑒3 𝑖𝑠 ! =

1

2
⋅ 0.2 = 0.1
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Probability of Uncertain Trace Realizations

Event set Event seq.

𝒔𝒆

Realization

𝒔𝒂 𝑷(𝒔𝒆) 𝑷(𝒔𝒂|𝒔𝒆) 𝑷(𝒔𝒂)

{𝑒1, 𝑒2, 𝑒3, 𝑒4}

𝑒1, 𝑒2, 𝑒3, 𝑒4
𝑎, 𝑏, 𝑑, 𝑒

0.1
𝑎, 𝑐, 𝑑, 𝑒

𝑒1, 𝑒3, 𝑒2, 𝑒4
𝑎, 𝑑, 𝑏, 𝑒

0.1
𝑎, 𝑑, 𝑐, 𝑒

{𝑒1, 𝑒2, 𝑒4} 𝑒1, 𝑒2, 𝑒4
𝑎, 𝑏, 𝑒

0.8
𝑎, 𝑐, 𝑒

Event 

ID
Activity Timestamp

Event 

type

𝑒1 a 8: 13: 43 !

𝑒2
{b∶ 0.9,
c: 0.1}

[11: 00: 00, 11: 59: 59] !

𝑒3 d [11: 00: 00, 11: 59: 59] !: 0.2 ? : 0.8

𝑒4 e 22: 00: 00 !

S1

S2

𝑃 ⟨𝑒1, 𝑒2, 𝑒4⟩ =
1

𝑆2
⋅ 𝑝 𝑒3 𝑖𝑠 ? =

1

1
⋅ 0.8 = 0.8
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Probability of Uncertain Trace Realizations

Event set Event seq.

𝒔𝒆

Realization

𝒔𝒂 𝑷(𝒔𝒆) 𝑷(𝒔𝒂|𝒔𝒆) 𝑷(𝒔𝒂)

{𝑒1, 𝑒2, 𝑒3, 𝑒4}

𝑒1, 𝑒2, 𝑒3, 𝑒4
𝑎, 𝑏, 𝑑, 𝑒

0.1
0.9

𝑎, 𝑐, 𝑑, 𝑒 0.1

𝑒1, 𝑒3, 𝑒2, 𝑒4
𝑎, 𝑑, 𝑏, 𝑒

0.1
0.9

𝑎, 𝑑, 𝑐, 𝑒 0.1

{𝑒1, 𝑒2, 𝑒4} 𝑒1, 𝑒2, 𝑒4
𝑎, 𝑏, 𝑒

0.8
0.9

𝑎, 𝑐, 𝑒 0.1

Event 

ID
Activity Timestamp

Event 

type

𝑒1 a 8: 13: 43 !

𝑒2
{b∶ 0.9,
c: 0.1}

[11: 00: 00, 11: 59: 59] !

𝑒3 d [11: 00: 00, 11: 59: 59] !: 0.2 ? : 0.8

𝑒4 e 22: 00: 00 !

S1

S2

𝑃 𝑠𝑎 𝑠𝑒 = ෑ

𝑖=1

𝑠𝑒

𝑃(𝑒𝑖 executes 𝑎𝑖)
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Probability of Uncertain Trace Realizations

Event set Event seq.

𝒔𝒆

Realization

𝒔𝒂 𝑷(𝒔𝒆) 𝑷(𝒔𝒂|𝒔𝒆) 𝑷(𝒔𝒂)

{𝑒1, 𝑒2, 𝑒3, 𝑒4}

𝑒1, 𝑒2, 𝑒3, 𝑒4
𝑎, 𝑏, 𝑑, 𝑒

0.1
0.9 0.09

𝑎, 𝑐, 𝑑, 𝑒 0.1 0.01

𝑒1, 𝑒3, 𝑒2, 𝑒4
𝑎, 𝑑, 𝑏, 𝑒

0.1
0.9 0.09

𝑎, 𝑑, 𝑐, 𝑒 0.1 0.01

{𝑒1, 𝑒2, 𝑒4} 𝑒1, 𝑒2, 𝑒4
𝑎, 𝑏, 𝑒

0.8
0.9 0.72

𝑎, 𝑐, 𝑒 0.1 0.08

Event 

ID
Activity Timestamp

Event 

type

𝑒1 a 8: 13: 43 !

𝑒2
{b∶ 0.9,
c: 0.1}

[11: 00: 00, 11: 59: 59] !

𝑒3 d [11: 00: 00, 11: 59: 59] !: 0.2 ? : 0.8

𝑒4 e 22: 00: 00 !

S1

S2
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• Let’s look at a specific domain of application: conformance checking

• If we have a reference model M, we can naturally define conformance checking on 

an uncertain trace as

Conformance Checking on Uncertain Data

𝐶𝑜𝑛𝑓 = ෍

𝑠𝑎 ∈ 𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠

𝑃 𝑠𝑎 ⋅ 𝑐𝑜𝑛𝑓(𝑠𝑎, 𝑀)



© Marco Pegoraro (RWTH Aachen University) 

19

Conformance Checking on Uncertain Data

𝐶𝑜𝑛𝑓 = ෍

𝑠𝑎 ∈ 𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠

𝑃 𝑠𝑎 ⋅ 𝑐𝑜𝑛𝑓 𝑠𝑎, 𝑀 = 2.6

Reference model
Realization

𝒔𝒂 𝑷(𝒔𝒂) 𝒄𝒐𝒏𝒇(𝒔𝒂)

𝑎, 𝑏, 𝑑, 𝑒 0.09 2

𝑎, 𝑐, 𝑑, 𝑒 0.01 0

𝑎, 𝑑, 𝑏, 𝑒 0.09 2

𝑎, 𝑑, 𝑐, 𝑒 0.01 0

𝑎, 𝑏, 𝑒 0.72 3

𝑎, 𝑐, 𝑒 0.08 1
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Conformance Checking on Uncertain Data

𝐶𝑜𝑛𝑓 = ෍

𝑠𝑎 ∈ 𝑅𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠

𝑃 𝑠𝑎 ⋅ 𝑐𝑜𝑛𝑓 𝑠𝑎, 𝑀 = 2.6

Reference model
Realization

𝒔𝒂 𝑷(𝒔𝒂) 𝒄𝒐𝒏𝒇(𝒔𝒂)

𝑎, 𝑏, 𝑑, 𝑒 0.09 2

𝑎, 𝑐, 𝑑, 𝑒 0.01 0

𝑎, 𝑑, 𝑏, 𝑒 0.09 2

𝑎, 𝑑, 𝑐, 𝑒 0.01 0

𝑎, 𝑏, 𝑒 0.72 3

𝑎, 𝑐, 𝑒 0.08 1

Much more 

representative than 

the unweighted 

average, 1.3
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• To evaluate our probability estimation, we use a Monte Carlo method

• We generate realizations by sampling values for uncertain attributes in a trace

• We repeat the process, and we measure the frequency of each realization

• We then compare such frequency with our probability estimation

Evaluation
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Evaluation
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• In our work, we provide a method to reliably compute probabilities of realizations 

of uncertain traces

• The probability distribution of such realization gives important information
 e.g., we can identify highly likely critical cases

• This information is an important complement to the insights provided, e.g., by 

conformance checking over uncertain data

Conclusion
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• Addressing the problem of possible dependencies among uncertain attributes

• Extending existing approaches for process discovery on uncertain data

Future Work
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