

Probability Estimation of Uncertain Process Trace Realizations

Marco Pegoraro, Bianka Bakullari, Merih Seran Uysal, Wil M.P. van der Aalst, RWTH Aachen University

International Workshop on Event Data and Behavioral Analytics, 1 November 2021

• Uncertain event data: events with quantified imprecision in their attributes

- "Quantified" means we can obtain a description of the uncertain attribute value(s)
 For categorical attributes: a set of possible values
 - For numerical attributes: an interval of possible values

• We can also have events that have been recorded, but might not have occurred (indeterminate events)

Often obtained through pre-processing and domain knowledge

Flight passenger #3167 landed in Munich from a high risk area.

Case ID	Event ID	Activity	Activity Timestamp	
3167	<i>e</i> ₁	passenger check in	8:13:43	
3167	<i>e</i> ₂	test	11:00	
3167	<i>e</i> ₃	communicate test result	11:00	reception not signed
3167	e_4	remove health data	22:00:00	

Two types of test are possible: after landing and before departure

Case ID	Event ID	Activity	Timestamp	Event type
3167	<i>e</i> ₁	passenger check in	8:13:43	!
3167	<i>e</i> ₂	{test after landing : 0.9, test before departure: 0.1}	[11:00:00,11:59:59]	!
3167	e ₃	communicate test result	[11:00:00,11:59:59]	1:0.2 ?:0.8
3167	e4	remove health data	22:00:00	!

through domain knowledge or heuristics, we determine that the "test after landing" has 90% of probability of being the label of e_2

Case ID	Event ID	Activity	Timestamp	Event type
3167	<i>e</i> ₁	passenger check in	8:13:43	!
3167	<i>e</i> ₂	{test after landing : 0.9, test before departure: 0.1}	[11:00:00,11:59:59]	!
3167	<i>e</i> ₃	communicate test result	[11:00:00,11:59:59]	1:0.2 ?:0.8
3167	e_4	remove health data	22:00:00	!

we represent the timestamps of e_2 and e_3 as time intervals

Case ID	Event ID	Activity	Timestamp	Event type	
3167	<i>e</i> ₁	passenger check in	8: 13: 43	!	
3167	<i>e</i> ₂	{test after landing : 0.9, test before departure: 0.1}	[11:00:00,11:59:59]	!	
3167	<i>e</i> ₃	communicate test result	[11:00:00,11:59:59]	!: 0.2 ?: 0.8	
3167	e_4	remove health data	22:00:00	!	

the "!" symbol indicates the event actually occurred, the "?" means the event did not occur but has been recorded

we determine the event did not occur with 80% probability

6

• This trace corresponds to many possible **real-life scenarios** depending on the true value of its **uncertain attributes**

• Every sequence of activities possible in the uncertain trace is called a realization

Uncertain Trace Realizations

Case ID	Event ID	Activity	Timestamp	Event type
3167	e_1	passenger check in	8:13:43	!
3167	<i>e</i> ₂	{test after landing : 0.9 , test before departure: 0.1 }	[11:00:00,11:59:59]	!
3167	<i>e</i> ₃	communicate test result	[11:00:00,11:59:59]	1:0.2 ?:0.8
3167	e_4	remove health data	22:00:00	!

<passenger check in, test after landing, communicate test results, remove health data>

<passenger check in, test before departure, remove health data>

<passenger check in, communicate results, test before departure, remove health data>

<passenger check in, test after landing, remove health data>

. . .

8

Research question: what is the probability of occurrence of each realization?

This information is essential in the context of process mining on uncertain event data

• We will see how to determine such probabilities

 We will see their importance in an example of application: conformance checking

Uncertain Trace Realizations

Case ID	Event ID	Activity	Activity		Event type
3167	e_1	a passenger check in		8:13:43	!
3167	<i>e</i> ₂	<pre>b {test after landing : c test before departure</pre>	0.9, e: 0.1}	[11:00:00,11:59:59]	!
3167	<i>e</i> ₃	d communicate tes	st	[11:00:00,11:59:59]	1:0.2 ?:0.8
3167	<i>e</i> ₄	e remove health da	ata	22:00:00	!
	Eve	ent seq. <i>S_e</i>		Realization S_a	
	$\langle e_1,$	$e_2, e_3, e_4 \rangle$		$\langle a, b, d, e \rangle$ $\langle a, c, d, e \rangle$	
	$\langle e_1, e_2 \rangle$	$\langle e_1, e_3, e_2, e_4 \rangle$		$\langle a, d, b, e \rangle$	
				$\langle a, d, c, e \rangle$	
	$\langle e_1$	$, e_2, e_4 \rangle$		⟨a, b, e⟩ ⟨a, c, e⟩	

Event seq. S_e	Realization S _a
	$\langle a, b, d, e \rangle$
$\langle e_1, e_2, e_3, e_4 \rangle$	$\langle a, c, d, e \rangle$
	$\langle a, d, b, e \rangle$
$\langle e_1, e_3, e_2, e_4 \rangle$	$\langle a, d, c, e \rangle$
	$\langle a, b, e \rangle$
$\langle e_1, e_2, e_4 \rangle$	$\langle a, c, e \rangle$

Probability of observing the realization s_a given we observed the event sequence s_e

$$P(s_a) = \sum_{s_e \in S_e} P(s_e) \cdot P(s_a \mid s_e)$$

$$P(s_e) \cdot P(s_e \mid s_e)$$
probability of observing the event sequence s_e

We assume independence!

Realization S_a
$\langle a, b, d, e \rangle$
$\langle a, c, d, e \rangle$
$\langle a, d, b, e \rangle$
$\langle a, d, c, e \rangle$
$\langle a, b, e \rangle$
$\langle a, c, e \rangle$

Probability of observing the realization s_a given we observed the event sequence s_e

$$P(s_a) = \sum_{s_e \in S_e} P(s_e) \cdot P(s_a \mid s_e)$$
probability of observing the event sequence s_e

Event set	Event seq. <i>s_e</i>	Realization <i>s</i> a	$P(s_e)$	$P(s_a s_e)$	$P(s_a)$
	$\langle e_1, e_2, e_3, e_4 \rangle$	$\langle a, b, d, e \rangle$			
$\{a, a, a, a\}$	(-1)-2)-3)-4)	$\langle a, c, d, e \rangle$			
$\{e_1, e_2, e_3, e_4\} \bullet_1$	$\langle e_1, e_2, e_3, e_4 \rangle$ $\langle e_1, e_3, e_2, e_4 \rangle$	$\langle a, d, b, e \rangle$			
		$\langle a, d, c, e \rangle$			
		$\langle a, b, e \rangle$			
$\{e_1, e_2, e_4\}$ S ₂	$\left[\begin{array}{c} \langle e_1, e_2, e_4 \rangle \\ \end{array}\right]$	$\langle a, c, e \rangle$			

	Event ID	Activity	Timestamp	Event type
$D(\alpha) = \frac{1}{2} \prod D(\alpha i \alpha l) \prod D(\alpha i \alpha 2)$	e_1	а	8:13:43	!
$P(s_e) = \frac{1}{ S_i } \cdot \prod_{e \in s_e} P(e \text{ is }!) \cdot \prod_{e \notin s_e} P(e \text{ is }?)$	<i>e</i> ₂	{b: 0.9, c: 0.1}	[11:00:00,11:59:59]	!
	<i>e</i> ₃	d	[11:00:00,11:59:59]	!: 0.2 ?: 0.8
13	e_4	е	22:00:00	!

Event set	Event seq. <i>s_e</i>	Realization <i>s</i> a	$P(s_e)$	$P(s_a s_e)$	$P(s_a)$
		$\langle a, b, d, e \rangle$	0.1		
	$\langle e_1, e_2, e_3, e_4 \rangle$	$\langle a, c, d, e \rangle$	0.1		
$\{e_1, e_2, e_3, e_4\}$ S ₁		$\langle a, d, b, e \rangle$			
		$\langle a, d, c, e \rangle$			
		$\langle a, b, e \rangle$			
$\{e_1, e_2, e_4\}$ S ₂	(e_1, e_2, e_4)	$\langle a, c, e \rangle$			

$$P(\langle e_1, e_2, e_3, e_4 \rangle) = \frac{1}{|S_1|} \cdot p(e_3 \text{ is } !) = \frac{1}{2} \cdot 0.2 = 0.1$$

	Event ID	Activity	Timestamp	Event type
	<i>e</i> ₁	а	8: 13: 43	!
	<i>e</i> ₂	{b: 0.9, c: 0.1}	[11:00:00,11:59:59]	!
_	<i>e</i> ₃	d	[11:00:00,11:59:59]	!: 0.2 ?: 0.8
	e_4	е	22:00:00	!

14

Event set	Event seq. <i>s_e</i>	Realization <i>s</i> a	$P(s_e)$	$P(s_a s_e)$	$P(s_a)$
	$\langle e_1, e_2, e_3, e_4 \rangle$	$\langle a, b, d, e \rangle$ $\langle a, c, d, e \rangle$	0.1		
$\{e_1, e_2, e_3, e_4\}$ S ₁	$\langle e_1, e_3, e_2, e_4 \rangle$	<a, b,="" d,="" e=""></a,>	0.1		
	(e_1, e_3, e_2, e_4)	$\langle a, d, c, e \rangle$	0.1		
$\{e_1, e_2, e_4\}$ S ₂	$\langle e_1, e_2, e_4 \rangle$	$\langle a, b, e \rangle$	0.8		
		$\langle a, c, e \rangle$			

$$P(\langle e_1, e_2, e_4 \rangle) = \frac{1}{|S_2|} \cdot p(e_3 \text{ is } ?) = \frac{1}{1} \cdot 0.8 = 0.8$$

Event ID	Activity	Timestamp	Event type
e_1	а	8:13:43	!
<i>e</i> ₂	{b: 0.9, c: 0.1}	[11:00:00,11:59:59]	!
 <i>e</i> ₃	d	[11:00:00,11:59:59]	!: 0.2 ?: 0.8
e_4	е	22:00:00	!

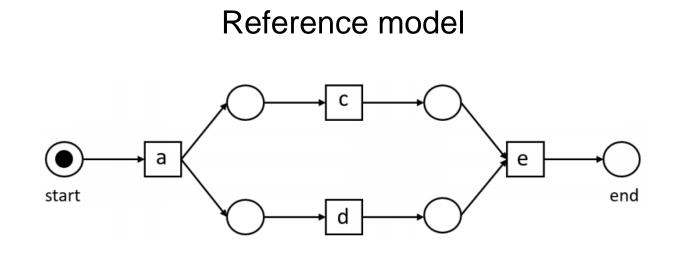
Event set	Event seq. <i>s_e</i>	Realization <i>s</i> a	$P(s_e)$	$P(s_a s_e)$	$P(s_a)$
		$\langle a, b, d, e \rangle$	0.1	0.9	
	$\langle e_1, e_2, e_3, e_4 \rangle$	$\langle a, c, d, e \rangle$	0.1	0.1	
$\{e_1, e_2, e_3, e_4\}$ 5 ₁	$\langle e_1, e_2, e_3, e_4 \rangle$	$\langle a, d, b, e \rangle$	0.1	0.9	
		$\langle a, d, c, e \rangle$		0.1	
$\{e_1, e_2, e_4\}$ S ₂	$\left\{ \left\langle e_{1},e_{2},e_{4}\right\rangle \right.$	$\langle a, b, e \rangle$	0.8	0.9	
		$\langle a, c, e \rangle$		0.1	

Event

Event

16

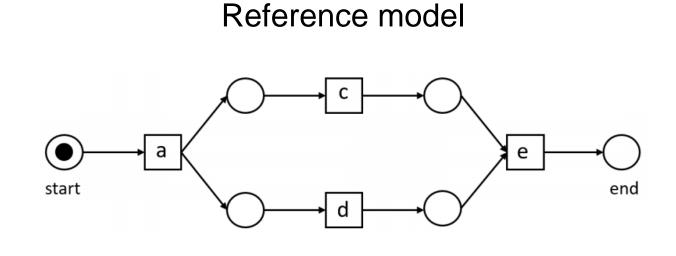
Event set	Event seq. <i>s_e</i>	Realization s _a	P (s _e)	$P(s_a s_e)$	$P(s_a)$
		$\langle a, b, d, e \rangle$	0.1	0.9	0.09
	$\langle e_1, e_2, e_3, e_4 \rangle$	$\langle a, c, d, e \rangle$	0.1	0.1	0.01
$\{e_1, e_2, e_3, e_4\}$ S ₁	$\langle e_1, e_3, e_2, e_4 \rangle$	$\langle a, d, b, e \rangle$	0.1	0.9	0.09
		$\langle a, d, c, e \rangle$		0.1	0.01
$\{e_1, e_2, e_4\}$ S ₂	$\int \langle a \rangle = a \rangle$	$\langle a, b, e \rangle$	0.0	0.9	0.72
	$\left(e_1, e_2, e_4\right)$	$\langle a, c, e \rangle$	0.8	0.1	0.08


Event ID	Activity	Timestamp	Event type
<i>e</i> ₁	а	8: 13: 43	!
<i>e</i> ₂	{b: 0.9, c: 0.1}	[11:00:00,11:59:59]	!
 <i>e</i> ₃	d	[11:00:00,11:59:59]	!: 0.2 ?: 0.8
<i>e</i> ₄	е	22:00:00	!

Conformance Checking on Uncertain Data

- Let's look at a specific domain of application: conformance checking
- If we have a reference model M, we can naturally define conformance checking on an uncertain trace as

$$Conf = \sum_{s_a \in Realizations} P(s_a) \cdot conf(s_a, M)$$



Realization <i>s_a</i>	$P(s_a)$	conf(s _a)
$\langle a, b, d, e \rangle$	0.09	2
$\langle a, c, d, e \rangle$	0.01	0
$\langle a, d, b, e \rangle$	0.09	2
$\langle a, d, c, e \rangle$	0.01	0
$\langle a, b, e \rangle$	0.72	3
$\langle a, c, e \rangle$	0.08	1

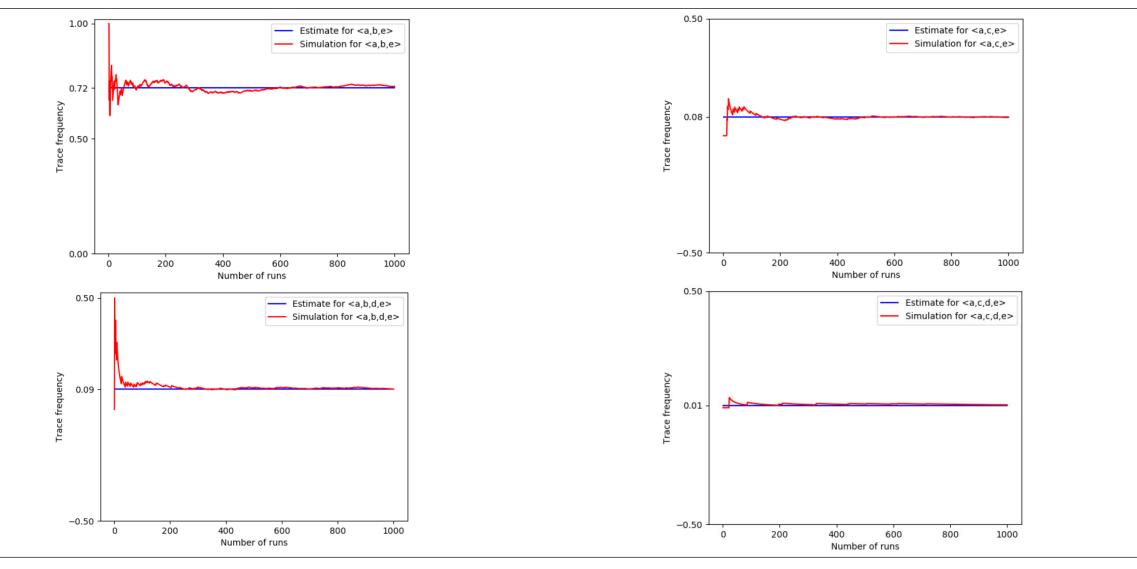
$$Conf = \sum_{s_a \in Realizations} P(s_a) \cdot conf(s_a, M) = 2.6$$

Realization <i>s_a</i>	$P(s_a)$	conf(s _a)
$\langle a, b, d, e \rangle$	0.09	2
$\langle a, c, d, e \rangle$	0.01	0
$\langle a, d, b, e \rangle$	0.09	2
$\langle a, d, c, e \rangle$	0.01	0
$\langle a, b, e \rangle$	0.72	3
$\langle a, c, e \rangle$	0.08	1

$$Conf = \sum_{s_a \in Realizations} P(s_a) \cdot conf(s_a, M) = 2.6$$

Much more representative than the unweighted average, 1.3

• To evaluate our probability estimation, we use a Monte Carlo method


• We generate realizations by sampling values for uncertain attributes in a trace

• We repeat the process, and we measure the **frequency** of each realization

• We then compare such frequency with our probability estimation

Evaluation

 \mathbf{R}

S Chair of Process and Data Science In our work, we provide a method to reliably compute probabilities of realizations of uncertain traces

- The probability distribution of such realization gives important information – e.g., we can identify highly likely critical cases
- This information is an important complement to the insights provided, e.g., by conformance checking over uncertain data

• Addressing the problem of possible **dependencies** among uncertain attributes

• Extending existing approaches for process discovery on uncertain data

Marco Pegoraro

pegoraro@pads.rwth-aachen.de

www.mpegoraro.net

@pegoraro_marco

https://www.researchgate.net/profile/Marco-Pegoraro-2

References

Pegoraro, Marco, Merih Seran Uysal, and Wil M.P. van der Aalst. "Discovering process models from uncertain event data." *International Conference on Business Process Management*. Springer, Cham, 2019.

Pegoraro, Marco, Merih Seran Uysal, and Wil M.P. van der Aalst. "Conformance checking over uncertain event data." *Information Systems* (2021): 101810.

Pegoraro, Marco, Merih Seran Uysal, and Wil M.P. van der Aalst. "Efficient time and space representation of uncertain event data." *Algorithms* 13.11 (2020): 285.

Pegoraro, Marco, Merih Seran Uysal, and Wil MP van der Aalst. "PROVED: A Tool for Graph Representation and Analysis of Uncertain Event Data." *International Conference on Applications and Theory of Petri Nets and Concurrency*. Springer, Cham, 2021.