

Text-Aware Predictive Monitoring of Business Processes

Marco Pegoraro, Merih Seran Uysal, David Benedikt Georgi, Wil M.P. van der Aalst

24th International Conference on Business Information Systems
June 16th 2021

Process mining

Event log

	Case	Case id Event id	Event id	Properties					
				Timestamp	Activity	Resource	Cost		
	1		35654423	30-12-2010:11.02	register request	Pete	50		
			35654424	31-12-2010:10.06	examine thoroughly	Sue	400		
	\rightarrow		35654425	05-01-2011:15.12	check ticket	Mike	100		
			35654426	06-01-2011:11.18	decide	Sara	200		
			35654427	07-01-2011:14.24	reject request	Pete	200		
	2		35654483	30-12-2010:11.32	register request	Mike	50		
			35654485	30-12-2010:12.12	check ticket	Mike	100		
Traces	\rightarrow		35654487	30-12-2010:14.16	examine casually	Pete	400		
			35654488	05-01-2011:11.22	decide	Sara	200		
			35654489	08-01-2011:12.05	pay compensation	Ellen	200		
	3		35654521	30-12-2010:14.32	register request	Pete	50		
			35654522	30-12-2010:15.06	examine casually	Mike	400		
			35654524	30-12-2010:16.34	check ticket	Ellen	100		
			35654525	06-01-2011:09.18	decide	Sara	200		
			35654526	06-01-2011:12.18	reinitiate request	Sara	200		
			35654527	06-01-2011:13.06	examine thoroughly	Sean	400		
			35654530	08-01-2011:11.43	check ticket	Pete	100		
			35654531	09-01-2011:09.55	decide	Sara	200		
			35654533	15-01-2011:10.45	pay compensation	Ellen	200		

Processes: feature prediction

Text matter!

Exploiting free text in predictive monitoring

Exploiting free text in predictive monitoring

Sequence of Events

 $\langle e_1, e_2, e_3, \dots, e_n \rangle$

Sequence of Vectors

$$\langle x_1, x_2, x_3, \dots, x_n \rangle$$

Case ID Activity Timestamp Resource Cost Comment
$$e_i = \begin{pmatrix} \text{Case ID Activity} & \text{Timestamp} & \text{Resource} & \text{Cost} & \text{Comment} \end{pmatrix}$$

$$02.02.2020:18.14, \quad \text{J. Brown, MD, of a comment and of the patient has been diagnosed with high blood pressure."}$$

$$0 \text{ne-hot encoding time vector} \quad 0 \text{ne-hot encoding} \quad 0 \text{ne-hot$$

Exploiting free text in predictive monitoring

Sequence of Events

$$\langle e_1, e_2, e_3, \dots, e_n \rangle$$

Encode

Sequence of Vectors

$$\langle x_1, x_2, x_3, \dots, x_n \rangle$$

 $e_i = \begin{pmatrix} \text{Case ID} & \text{Activity} & \text{Timestamp} \\ \text{Consultation}, & \text{O2.02.2020:18.14}, \end{pmatrix}$

One-hot encoding

Six-dimensional time vector

 $x_i = (0, 0, 1, 0, 0, 0.2, 0.1, 0.2, 0.5, 0.3, 0.2,$

Time Vector

(Time since previous event,

Time since case start,

Time since first recorded event,

Time since midnight,

Time since last Monday,

Time since last January 1 00:00)

Comment

ent has been diagnosed igh blood pressure.")

pply text model

), 0.2, 0.6, 0.4, 0.2)

Text vectorization

"The patient has been diagnosed with high blood pressure."

("patient", "diagnose", "high", "blood", "pressure")

Text vectorization models

Bag of Words

based on word frequencies (tf-idf)

Zellig S. Harris [2]

Paragraph Vector

based on neural network

Quoc V. Le and Tomas Mikolov [4]

Bag of N-Gram

n-gram frequencies (tf-idf)

Peter F. Brown et al. [3]

Latent Dirichlet Allocation

based on topic modeling

David M. Blei et al. [5]

Evaluation

We will validate our approach on 2 real-life logs:

BPI Challenge 2016: customer journey log

Case	Activity	Timestamp	Age	\mathbf{Gender}	Message
40154127	question	2015/12/15 12:24:42.000			Can you send me a copy of the decision?
40154127	taken	2015/12/30 15:39:36.000	50 - 65	M	
40154127	mijn_sollicitaties	2015/12/30 15:39:42.000	50 - 65	\mathbf{M}	
40154127	taken	2015/12/30 15:39:46.000	50 - 65	M	
40154127	home	2015/12/30 15:39:51.000	50 - 65	M	
23245109	question	2015/07/21 09:49:32.000	50-65	M	Law: How is the GAA (Average Number of
					Labor)?
23245109	question	2015/07/21 09:54:28.000	50-65	M	Dismissal Procedure: Stops my contract au-
	-	, ,			tomatically after two years of illness?
23245109	question	2015/07/21 10:05:43.000	50-65	M	Dismissal: Am I entitled to a transitional al-
	-	, ,			lowance?
23245109	question	2015/07/21 10:05:56.000	50-65	M	Chain Determination: How often may be ex-
	•	, ,			tended a fixed-term contract?

Evaluation

We will validate our approach on 2 real-life logs:

MIMIC-III: hospital admission log

Case	Activity	$_{ m Timestamp}$	Admission Type	Insurance	Diagnosis
16 16	PHYS REFERRAL/NORMAL DELI HOME	2178-02-03 06:35:00 2178-02-05 10:51:00		Private Private	NEWBORN
17	PHYS REFERRAL/NORMAL DELI	2134-12-27 07:15:00	ELECTIVE	Private	PATIENT FORAMEN OVALE PATENT FORA- MEN OVALE MINIMALLY INVASIVE SDA
17	HOME HEALTH CARE	2134-12-31 16:05:00	ELECTIVE	Private	
17	EMERGENCY ROOM ADMIT	2135-05-09 14:11:00	EMERGENCY	Private	PERICARDIAL EFFUSION
17	HOME HEALTH CARE	2135-05-13 14:40:00	EMERGENCY	Private	
18	PHYS REFERRAL/NORMAL DELI	2167-10-02 11:18:00	EMERGENCY	Private	HYPOGLYCEMIA SEIZURES
18 19 19	HOME EMERGENCY ROOM ADMIT REHAB/DISTINCT PART HOSP	2167-10-04 16:15:00 2108-08-05 16:25:00 2108-08-11 11:29:00	EMERGENCY	Private Medicare Medicare	C 2 FRACTURE

Evaluation

Text-Aware Process Prediction

LSTM + Text Model

Variants:

Bag of Words
Bag of N-Gram
Paragraph Vector
Latent Dirichlet Allocation

Baseline 1

LSTM Baseline

LSTM

Based on

Niek Tax et al. [6] Nicolò Navarin et al. [7]

Baseline 2

Process Model Baseline

Annotated Transition System

Variants:

Sequence Abstraction
Bag Abstraction
Set Abstraction

Based on

Wil M. P. van der Aalst et al. [8] Niek Tax et al. [9]

Evaluation: metrics

Classification

Weighted-average F₁ Score

Regression

Mean Absolute Error

True value of instance i

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |\widehat{y}_i - y_i|$$

Predicted value of instance i

Evaluation: results

		BPIC2016 Customer Journey				MIMIC-III Hospital Admission				
Text	\mathbf{Text}	Activity	\mathbf{Time}	Outcome	Cycle	Activity	Time	Outcome	Cycle	
Model	Vect. Size	F_1	MAE	$\mathbf{F_1}$	MAE	F_1	MAE	${ m F_1}$	MAE	
Text-Aware Process Prediction (LSTM + Text Model)										
BoW	50	0.4251	0.1764	0.4732	0.2357	0.5389	29.0819	0.6120	69.2953	
$_{\mathrm{BoW}}$	100	0.4304	0.1763	0.4690	0.2337	0.5487	31.4378	0.6187	70.9488	
$_{ m BoW}$	500	0.4312	0.1798	0.4690	0.2354	0.5596	27.5495	0.6050	70.1084	
$_{\rm BoNG}$	50	0.4270	0.1767	0.4789	0.2365	0.5309	27.5397	0.6099	69.4456	
$_{\rm BoNG}$	100	0.4237	0.1770	0.4819	0.2373	0.5450	28.3293	0.6094	69.3619	
$_{\rm BoNG}$	500	0.4272	0.1773	0.4692	0.2358	0.5503	27.9720	0.6052	70.6906	
PV	10	0.4112	0.1812	0.4670	0.2424	0.5265	29.4610	0.6007	73.5219	
PV	20	0.4134	0.1785	0.4732	0.2417	0.5239	27.2902	0.5962	69.6191	
PV	100	0.4162	0.1789	0.4707	0.2416	0.5292	28.2369	0.6058	69.4793	
LDA	10	0.4239	0.1786	0.4755	0.2394	0.5252	28.8553	0.6017	69.1465	
LDA	20	0.4168	0.1767	0.4747	0.2375	0.5348	27.8830	0.6071	69.6269	
LDA	100	0.4264	0.1777	0.4825	0.2374	0.5418	27.5084	0.6106	69.3189	
LSTM $Model$ $Prediction$ $Baseline$										
LSTM	[7]	0.4029	0.1781	0.4673	0.2455	0.5187	27.7571	0.5976	70.2978	
Process Model Prediction Baseline (Annotated Transition System)										
Sequence [8, 9]		0.4005	0.2387	0.4669	0.2799	0.4657	64.0161	0.5479	171.5684	
Bag [8, 9]		0.3634	0.2389	0.4394	0.2797	0.4681	64.6567	0.5451	173.7963	
Set [8, 9]		0.3565	0.2389	0.4381	0.2796	0.4397	63.2042	0.5588	171.4487	

Conclusion

- Text carries information that have a positive effect in predictive monitoring
- On short text, simple models such as BoW perform well (order have a smaller impact)
- To be addressed:
 - -Black box: decisions are not transparent and interpretable
 - -Confidentiality issues: anonymizing text is challenging

Marco Pegoraro pegoraro@pads.rwth-aachen.de www.mpegoraro.net

- [1] Wil M.P. van der Aalst. "Process Mining: Data science in action." Springer.
- Zellig S. Harris. Distributional structure. Word, 10(2-3):146–162, 1954.
- Peter F. Brown, Vincent J. Della Pietra, Peter V. Desouza, Jennifer C. Lai, and Robert L. Mercer. Class-based n-gram models of natural language. *Computational linguistics*, 18(4):467–480, 1992.
- [4] Quoc V. Le and Tomas Mikolov. Distributed representations of sentences and documents. In Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014, volume 32 of JMLR Workshop and Conference Proceedings, pages 1188–1196. JMLR.org, 2014.
- [5] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. *J. Mach. Learn. Res.*, 3:993–1022, 2003.
- [6] Niek Tax, Ilya Verenich, Marcello La Rosa, and Marlon Dumas. Predictive business process monitoring with LSTM neural networks. In Eric Dubois and Klaus Pohl, editors, *Advanced Information Systems Engineering 29th International Conference, CAiSE 2017, Essen, Germany, June 12-16, 2017, Proceedings*, volume 10253 of *Lecture Notes in Computer Science*, pages 477–492. Springer, 2017.
- [7] Nicolò Navarin, Beatrice Vincenzi, Mirko Polato, and Alessandro Sperduti. LSTM networks for data-aware remaining time prediction of business process instances. In 2017 IEEE Symposium Series on Computational Intelligence, SSCI 2017, Honolulu, HI, USA, November 27 Dec. 1, 2017, pages 1–7. IEEE, 2017.
- [8] Wil M. P. van der Aalst, M. H. Schonenberg, and Minseok Song. Time prediction based on process mining. *Inf. Syst.*, 36(2):450–475, 2011.
- [9] Niek Tax, Irene Teinemaa, and Sebastiaan J. van Zelst. An interdisciplinary comparison of sequence modeling methods for next-element prediction. *Softw. Syst. Model.*, 19(6):1345–1365, 2020.