

Mining Uncertain Event Data in Process Mining

Marco Pegoraro and Wil M.P. van der Aalst

Uncertainty in event logs

An **uncertain event log** is an event log where some of the values include some sort of quantified uncertainty.

Uncertainty can be defined not only on the attribute level, but also on the event level.

Uncertainty - Taxonomy

Discrete probability distribution Set of possible values $\{x,y,z,\}$		Weak uncertainty	Strong uncertainty
Discrete data $ \begin{cases} x, y, z, \ldots \end{cases} $		Discrete probability distribution	Set of possible values
	Discrete data	A 0.15 - 4 1 2 2 2 2 2 2 2 2 2	$\{x,y,z,\}$
Probability density function Interval			Interval
Continuous data $ \{x \in \mathbb{R} a \le x \le b \} $	Continuous data		$\{x \in \mathbb{R} a \le x \le b\}$

Uncertainty - Taxonomy

Uncertainty on the *attribute* level:

Case ID: discrete

Activity: discrete

Timestamp: continuous

Uncertainty on the event level:

 Indeterminate event: an event that has been recorded, but it might not have happened. Discrete (binary)

Example of strongly uncertain trace

Case ID	Timestamp	Activity	Indet. event
{0, 1}	2011-12-05T00:00	A	!
0	2011-12-07T00:00	{B, C, D}	!
0	[2011-12-06T00:00,	D	9
U	2011-12-10T00:00]	D	4
0	2011-12-09T00:00	{A, C}	!
{0, 1, 2}	2011-12-11T00:00	E	?

Example of weakly uncertain trace

Case ID	Timestamp	Activity	Indet. event
{0:0.9, 1:0.1}	2011-12-05T00:00	A	!
0	2011-12-07T00:00	{B:0.7, C:0.3}	!
0	$\mathcal{N}(2011-12-08T00:00, 2)$	D	?:0.5
0	2011-12-09T00:00	{A:0.2, C:0.8}	!
{0:0.4, 1:0.6}	2011-12-11T00:00	Е	?:0.7

Uncertainty in event logs

There can be many high-level sources of uncertainty in event data:

- Incorrectness: errors happened while recording data or manipulating the logs (e.g. while merging logs)
- Coarseness: variability of an attribute caused by imprecision of a measure (e.g. limitation of sensors)
- Ambiguity: the event data is recorded in a way that needs interpretation (e.g. event data recorded as free text)

Uncertainty in event logs

Very often, we have **coarseness on the timestamp attribute.**

Mainly because of two reasons:

- Data formats too coarse (e.g., timestamps recorded with the date but not the time)
- Recording of events in batches (e.g., a doctor that inputs data in an information system at the end of the round of visits)

Conformance checking in uncertain settings

- Goal: given a log with traces that contains uncertainty and a (non uncertain)
 model, calculate a measure of conformance for the best and worst case
 scenario
 - Search among possible realization of the uncertain trace the best and worst fitting
 - Provide an upper and lower bound for conformity cost in uncertain setting
 - We are going to use alignments
- Setting:
 - Strong uncertainty on activities and timestamps
 - Strongly uncertain indeterminate events

Running example

Setting:

- Strong uncertainty on activities and timestamps
- Strongly uncertain indeterminate events

Case ID	Timestamp	Activity	Indet. event
0	2011-12-05T00:00	A	!
0	2011-12-07T00:00	{B, C}	!
0	[2011-12-06T00:00	D	,
U	2011-12-10T00:00]	D	•
0	2011-12-09T00:00	{A, C}	!
0	2011-12-11T00:00	Е	?

Realizations of a trace

 Realizations of a trace: all possible certain traces obtained by selecting an available value for the uncertain attributes.

Case ID	Timestamp	Activity	Indet. event
0	2011-12-05T00:00	A	!
0	2011-12-07T00:00	{B, C}	!
0	[2011-12-06T00:00 2011-12-10T00:00]	D	!
0	2011-12-09T00:00	{A, C}	!
0	2011-12-11T00:00	Е	?

Realizations:

<A, B, C, D, E>

<A, B, D, C, E>

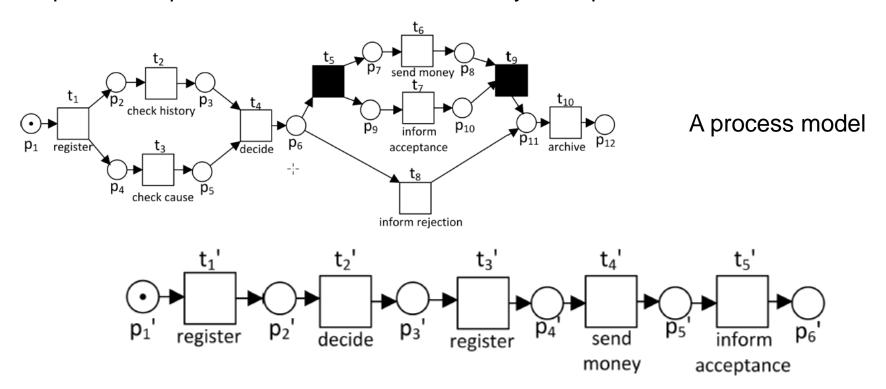
<A, C, D, C, E>

<A, C, D, A, E>

<A, D, C, C, E>

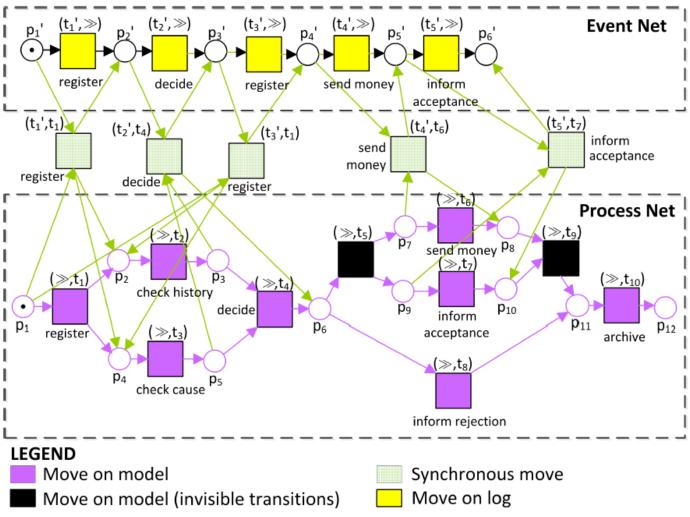
<A, D, B, C>

<A, D, C, A>


. . .

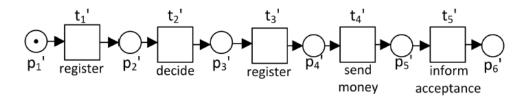
Alignments

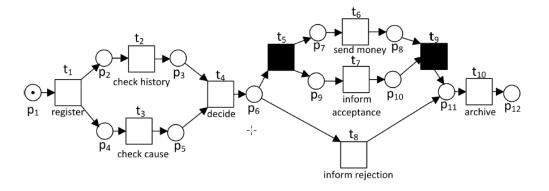
To align a trace with a model, we need to firstly turn the trace into an **event net**, a sequence-shaped Petri net able to execute only that specific trace.



Event net of the trace < register, decide, register, send money, inform acceptance>

Product net


A. Adriansyah, doctoral thesis, 2014



Alignments

register	>>	>>	decide	register	>>	send	inform	>>	>>
						money	acceptance		
register	check	check	decide			send	inform		archive
	history	cause				money	acceptance		
t_1	t_2	t_3	t_4	>>	t_5	t_6	t_7	t_9	t_{10}

A. Adriansyah, doctoral thesis, 2014

Conformance checking in uncertain settings

Bruteforce approach

- 1. Generate all the realizations of an uncertain trace
- 2. Align all of them
- 3. Pick the ones with the minimum and maximum score

Very slow!

There is a quicker way to compute the lower bound for conformance cost

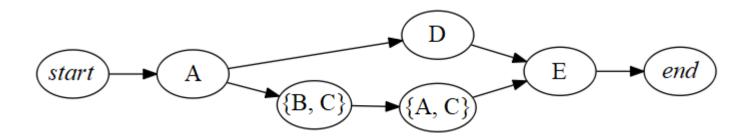
Process mining over uncertainty: behavior graph

- Create a node for each uncertain event
- 2. Create two extra nodes *start* and *end*

Case ID	Timestamp	Activity	Indet. event
0	2011-12-05T00:00	A	!
0	2011-12-07T00:00	{B, C}	!
0	[2011-12-06T00:00	D	,
U	2011-12-10T00:00]	D	
0	2011-12-09T00:00	$\{A, C\}$!
0	2011-12-11T00:00	E	?

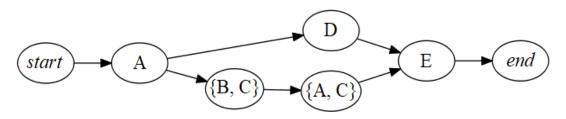
 A → B iif the event in node A has happened **before** the event in node B

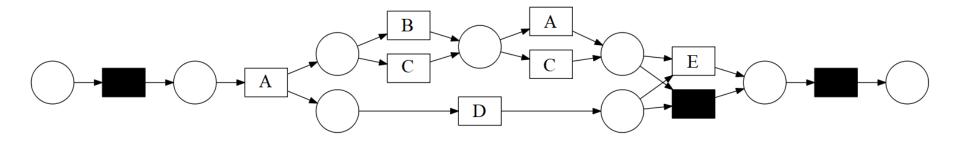
start A end


Notice that a behaviour graph will always be a **directed acyclic graph!**

Process mining over uncertainty: reduced behavior graph

We then perform a transitive reduction.


Now, $A \rightarrow B$ if the event in node A happened **immediately before** the event in node B.

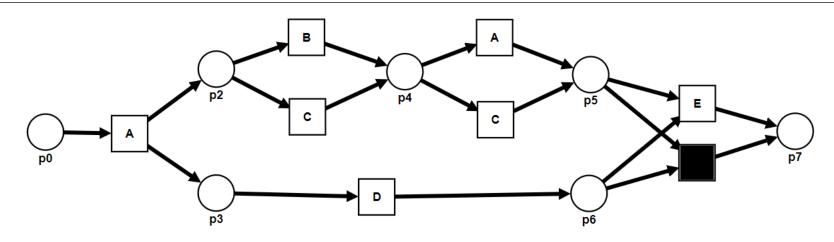


Process mining over uncertainty: behavior net

Case ID	Timestamp	Activity	Indet. event
0	2011-12-05T00:00	A	!
0	2011-12-07T00:00	{B, C}	!
0	[2011-12-06T00:00	D	,
U	2011-12-10T00:00]	ם	•
0	2011-12-09T00:00	$\{A, C\}$!
0	2011-12-11T00:00	E	?

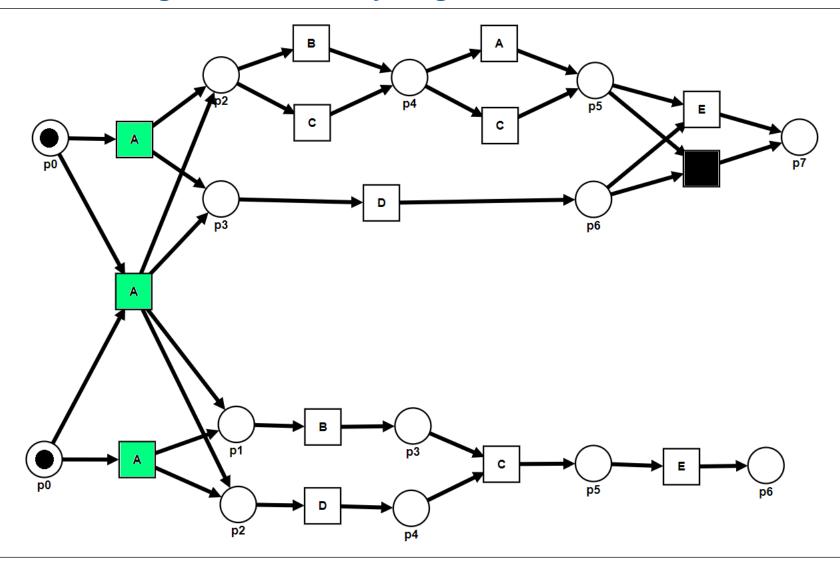
Process mining over uncertainty: behavior net

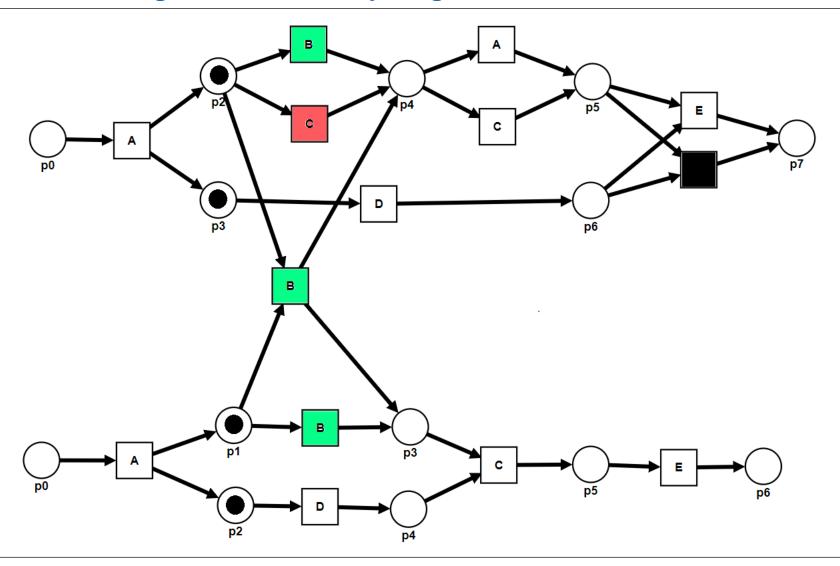
We can use the behavior net instead of the event net to compute alignments.

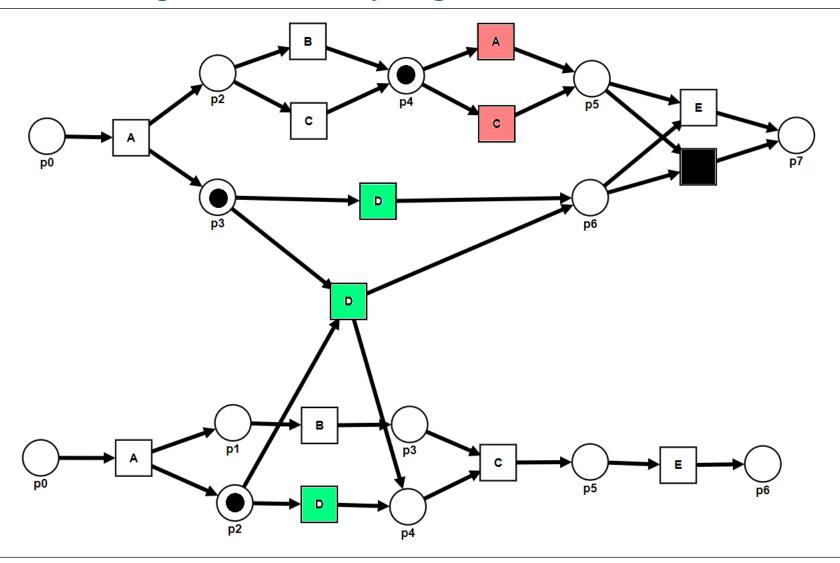

We obtain **two complete firing sequences**, one on the behavior net and one on the model.

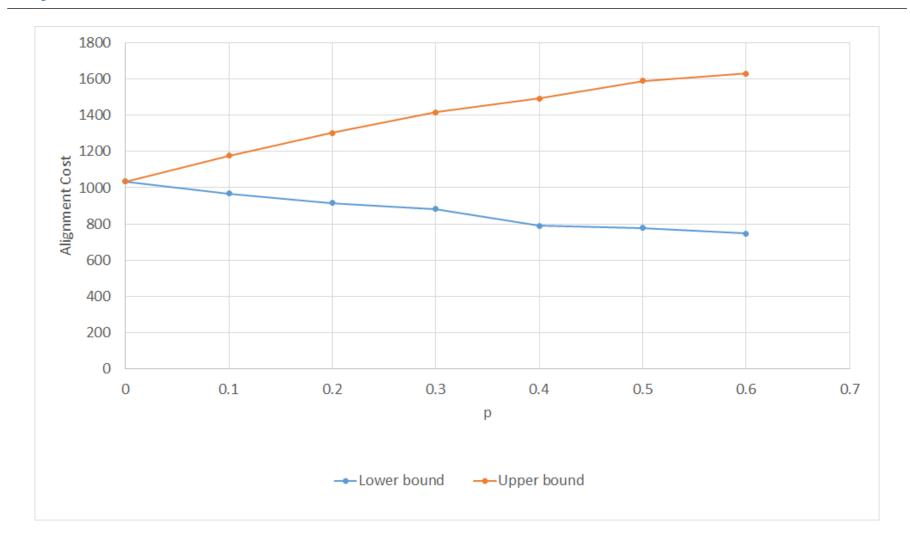
The firing sequence in the behavior net will be a **realization** of the uncertain trace.

Since the search returns the path through the product net with the minimal cost, the realization returned by the alignment will be the **lower bound** for conformance cost



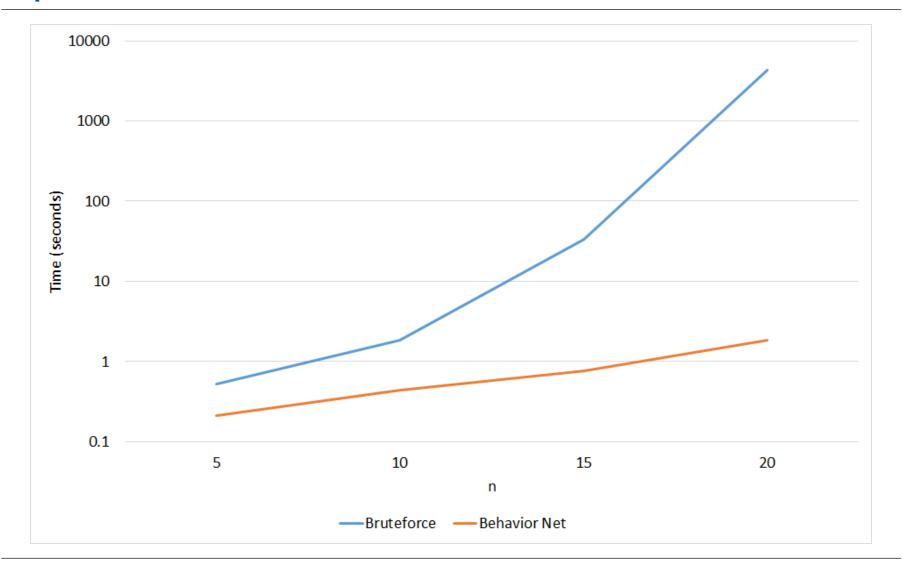





Experimental results

Two research questions:

- Q1: do the upper and lower bounds for the conformance cost behave as expected in uncertain traces?
- Q2: does aligning the behavior net to calculate the lower bound for the conformance cost yield lower computing times?


Experimental results: Q1

Experimental results: Q2

Future developments

- Discovery of uncertain models
- Optimization of the worst case scenario of alignment computation
- Extension to weak uncertainty

Contacts and references

Marco Pegoraro

pegoraro@pads.rwth-aachen.de

Twitter: @pegoraro_marco

Site: http://mpegoraro.net/

http://pm4py.pads.rwth-aachen.de/

Twitter: @pm4py

http://www.pads.rwth-aachen.de/

Twitter: @pads_rwth

Blog: https://blog.rwth-aachen.de/pads/

