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Research 
Question
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Can we improve the computational 
performance by using sampled event 
logs, while maintaining the accuracy?
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Our 
Hypothesis
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Performance Quality / Accuracy

Select the best Candidates
Reduce the training time

Maintain accuracy 
We do not loose too much 

information
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How many cases should be chosen?

Case 
selection

Unique selection

Logarithmic 
distribution

Division 

If we have 100 cases from a variant:

Unique selection ➔ 1 case

Logarithmic of base k  ➔ [𝑙𝑜𝑔𝑘
100] cases

Division by k ➔
100

𝑘
cases
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Evaluation

1) Datasets

01 November 2021

Event Log Cases Activities Variants Attributes FE Time

RTFM 150370 11 231 1 73649 s

BPIC-2012-W 9658 6 2643 2 1212 s

Event logs

BPIC-2012-W RTFM

13



Event Log Sampling for Predictive Process Monitoring 

Evaluation

2) Prediction 
objective
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Evaluation

3) Prediction 
Models
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LSTM

XG Boost

Event Log LSTM Train Time LSTM Acc

RTFM 3021 0.791

BPIC-2012-W 3344 0.68

Event Log
XGB Train 

Time
XGB Acc

RTFM 11372 0.814

BPIC-2012-W 2011 0.685
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Evaluation

4) Metrics
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𝑅𝐴𝑐𝑐 =
Accuracy using the sampled training log

Accuracy using the whole training log

𝑅𝑡 =
Training time using whole data

Training time using the sampled data

𝑅𝐹𝐸 =
Feature extraction time using whole data

Feature extraction time using the sampled data

𝑅𝑠 =
Size of the𝑤ℎ𝑜𝑙𝑒 𝑒𝑣𝑒𝑛𝑡 𝑙𝑜𝑔

Size of the sampled event log
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Results

Sample 
Methods

Division Logarithmic distribution
unique

K = 2 K = 3 K = 10 log2 log3 log10

Event Log 𝑅𝑠 𝑅𝐹𝐸 𝑅𝑠 𝑅𝐹𝐸 𝑅𝑠 𝑅𝐹𝐸 𝑅𝑠 𝑅𝐹𝐸 𝑅𝑠 𝑅𝐹𝐸 𝑅𝑠 𝑅𝐹𝐸 𝑅𝑠 𝑅𝐹𝐸

RTFM 1.99 4.8 3 11.1 9.8 106.9 153.5 12527.6 236.3 23699.2 572.3 74912.8 285.1 24841.8

BPIC-2012-W 1.22 1.37 1.41 1.8 1.66 2.51 6.06 22.41 9.05 37.67 28.5 208.32 1.73 2.36

The reduction in the size of training logs and the improvement in the performance of feature extraction
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Sample 
Methods

Division Logarithmic distribution
unique

K = 2 K = 3 K = 10 log2 log3 log10

Event Log 𝑅𝐴𝑐𝑐 𝑅𝑡 𝑅𝐴𝑐𝑐 𝑅𝑡 𝑅𝐴𝑐𝑐 𝑅𝑡 𝑅𝐴𝑐𝑐 𝑅𝑡 𝑅𝐴𝑐𝑐 𝑅𝑡 𝑅𝐴𝑐𝑐 𝑅𝑡 𝑅𝐴𝑐𝑐 𝑅𝑡

RTFM 1.001 2 1.004 2.9 0.99 9 0.716 26.7 0.724 33 0.767 41.8 0.631 29.1

BPIC-2012-W 1 1.4 0.985 1.3 0.938 1.3 0.977 4.7 0.97 5.8 0.876 11.9 0.996 1.6

Sample 
Methods

Division Logarithmic distribution
unique

K = 2 K = 3 K = 10 log2 log3 log10

Event Log 𝑅𝐴𝑐𝑐 𝑅𝑡 𝑅𝐴𝑐𝑐 𝑅𝑡 𝑅𝐴𝑐𝑐 𝑅𝑡 𝑅𝐴𝑐𝑐 𝑅𝑡 𝑅𝐴𝑐𝑐 𝑅𝑡 𝑅𝐴𝑐𝑐 𝑅𝑡 𝑅𝐴𝑐𝑐 𝑅𝑡

RTFM 1 2.4 1 1.4 1 84.1 0.686 126.4 0.706 191.8 0.772 355 0.582 297.7

BPIC-2012-W 0.999 2.3 0.998 2.4 0.997 3.4 0.923 10.7 0.97 16.7 0.883 64.8 0.997 2.8
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keep the accuracy in some cases 
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Event Log Sampling for Predictive Process Monitoring 

Discussion

01 November 2021

• Sampling event logs could increase the performance and 
keep the accuracy in some cases 

• We observed that different event logs needs different 
sampling methods

• Characteristics of the given event log and suitable sampling 
parameters has more effect than number of sampled cases 
or prediction models

• Using the proposed sampling method, we could speed up 
hyperparameters tunning and adapting with changes due 
to concept drift
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Future work
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Future Research

Relationship between the event log 
characteristics and the sampling parameters

Predicting critical infrequent activities

Sampling methods for outcome and 
remaining time prediction

25



Event Log Sampling for Predictive Process Monitoring 

Question?
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