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What would
happen in the
future?
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Model
Aware
Techniques

Simulation

Models

It Is an Requiring Process Model
extremely ..
active field of
research!

Not Requiring Process Model

Classical
Machine
Learning

Deep
Learning
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Expensive computational costs!
Hyperparameters with diferent
tunnmg parameters
Motivation!

Changes in
dynamic processes

Hardware
limitation
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Can we improve the computational

? performance by using sampled event
logs, while maintaining the accuracy?
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Research

Question
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Performance Quality / Accuracy
O ur Select the best Candidates Maintain accuracy
: h : Reduce the training time We do not loose too much
| ypOt esIsS information
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Proposed Sampling Procedure
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Proposed Sampling Procedure
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R
N

Training
event log

~

o1 November 2021

=

...

Traversing
event log

N\

Sorting
cases of
each variant

J

Categorical —
o

Case
selection

Sampled
log

Median

TU/

EINDHOVEN
UNIVERSITY OF
TECHNOLOGY



Proposed Sampling Procedure
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Which cases can represent their variant better?

Similarity to the general
distribution of variant

Arrival time

Randomly

Sampled
log
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Proposed Sampling Procedure
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How many cases should be chosen?
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Proposed Sampling Procedure
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How many cases should be chosen? If we have 100 cases from a variant:

Unique selection =) Unique selection =» 1 case

100

Case Logarithmic = Logarithmic of base k = [logj "] cases

selection distribution

Division

mp Division by k =» [%] cases
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A

T Event logs

RTFM

Eva | uation BPIC-2012-W

1) Datasets

RTFM 150370 73649 s

BPIC-2012-W BRel3et:] 6 2643 2 1212 s
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Remaining Time

Prediction
Evaluation
Predictive
. Process Outcome
2) Prediction Monitoring Prediction
objective

Next Activity
Prediction
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Event Log LSTM Train Time | LSTM Acc

T 021 0.791
—(a ) -y |
é 3344 0.68

LSTM ‘

Evaluation

3) Prediction |
Models oot e

Cem)e o™ o oW . 11372 0.814

2011 0.685
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Evaluation

4) Metrics

o1 November 2021

Rpg =

Size of the whole event log

S~ Size of the sampled event log

Training time using whole data

R, =
Y™ Training time using the sampled data

Accuracy using the sampled training log
Acc —

Accuracy using the whole training log

Feature extraction time using whole data

~ Feature extraction time using the sampled data
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Results

The reduction in the size of training logs and the improvement in the performance of feature extraction
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Sample Logarithmic distribution _
Methods vnique
log3
Event Log R |Rpg | Ry |Rpg| Ry |Rpg| Rs | Rpg | Rg Rpg Ry | Rpg | Rs | Rpg
RTFM 1.99 48 3 111 9.8 1069 1535 |12527.6 | 236.3 | 23699.2 | 572.3 |74912.8| 285.1 (24841.8
BPIC-2012-W 122 1.37 1.41 1.8 1.66 2.51 6.06 22.41 9.05 37.67 285 (208.32| 173 2.36
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Results
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|
The reduction in the size of training logs and the improvement in the performance of feature extraction
Sample Logarithmic distribution

unique

Methods

log3

Event Log RFE RS RFE RS RFE RS RFE RS RFE Rs RFE RS RFE

RTFM : 4.8 3 111 9.8 (1069 | 1535 |[12527.6 | 236.3 | 23699.2 | 572.3 |74912.8] 285.1 |24841.8

BPIC-2012-W : 1.37 1.41 1.8 1.66 | 2.51 6.06 2241 9.05 37.67 285 [208.32) 1.73 2.36
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.
® LSTM
Sample Logarithmic distribution _
Method unique
ethodas log3 logao
Event Log RAcc Rt RAcc Rt RAcc Rt RAcc Rt RAcc Rt RAcc Rt
RTFM 1.004 2.9 0.99 9 0716 | 26.7 | 0.724 33 0.767 | 41.8 0.631 29.1
BPIC-2012-W 0.985 13 | 0938 | 1.3 | 0977 4.7 0.97 5.8 0.876 11.9 0.996 16
® XG Boost
Sample Logarithmic distribution
Methods log1o
Event Log RAcc Rt RAcc Rt RAcc Rt RAcc Rt RAcc Rt RAcc Rt RAcc Rt
RTFM 1 2.4 1 14 1 84.1| 0686 | 1264 | 0.706 191.8 0.772 355 || 0582 | 297.7
BPIC-2012-W JoR°IF) 2.3 0.998 24 | 0997 | 34 | 0923 | 107 0.97 16.7 0.883 64.8) 0997 2.8
RWNTH
TU

o1 November 2021

UNIVERSITY OF
TECHNOLOGY



>
(@)
O
—
=)
O
(9}
<

improvement

20
® |STM
Sample Logarithmic distribution _
Method unique
ethods log3 log1o
Event Log RAcc Rt RAcc Rt RAcc Rt RAcc Rt RAcc Rt RAcc Rt RAcc Rt
<
RTFM 1.001 2 6.004 2.9 >O.99 9 0.716 | 26.7 | 0.724 33 0.767 | 41.8 0.631 29.1
\_}/
BPIC-2012-W 1 1.4 0.985 1.3 | 0938 | 1.3 | 0.977 47 0.97 5.8 0.876 11.9 0.996 1.6
® XG Boost
Sample Logarithmic distribution
Methods log3 log1o
Event Log RAcc Rt RAcc Rt RAcc Rt RAcc Rt RAcc Rt RAcc Rt RAcc Rt
RTFM 1 2.4 1 1.4 1 84.1| 0.686 | 126.4 | 0.706 191.8 0.772 355 | 0.582 | 297.7
BPIC-2012-W B2 2.3 0.998 24 | 0997 | 3.4 | 0923 | 10.7 0.97 16.7 0.883 64.8 | 0.997 2.8
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* Sampling event logs could increase the performance and
keep the accuracy in some cases
Discussion
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* Sampling event logs could increase the performance and
keep the accuracy in some cases

* We observed that different event logs needs different
sampling methods

Discussion
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* Sampling event logs could increase the performance and
keep the accuracy in some cases

* We observed that different event logs needs different
sampling methods

Discussion  Characteristics of the given event log and suitable sampling
parameters has more effect than number of sampled cases
or prediction models
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* Sampling event logs could increase the performance and
keep the accuracy in some cases
* We observed that different event logs needs different

sampling methods

Discussion  Characteristics of the given event log and suitable sampling
parameters has more effect than number of sampled cases
or prediction models

* Using the proposed sampling method, we could speed up
hyperparameters tunning and adapting with changes due
to concept drift
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Relationship between the event log

FUtU re Wo rk characteristics and the sampling parameters
-~ )
Predicting critical infrequent activities
- /
-~ )
.’:' Sampling methods for outcome and
remaining time prediction
& /
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Question?
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